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When a Fourier transform (FT) is to be numerically computed and subsequently 
numerically inverted, perhaps repetitively, it is desirable that the algorithm used to 
accomplish this should maintain the orthogonal nature of the Fourier expansion. 
Algorithms with this property are derived here for the FT of central functions in one, 
two, and three dimensions. These rules for mechanical quadrature are similar to the 
trapezoidal rule, but with intervals determined by the zeros of the orthogonal basis 
functions. A numerical test using Gaussians shows a high accuracy in the computed 
transforms. The procedure can be extended to other Fourier-Bessel transforms. 

I. ISTRODUCTION 

A problem often encountered in the equilibrium theory of fluids is the numerical 
solution of a convolution-type integral equation of the form 

~(~1 == ~(~1 + p j drw) CC; r -- r’ :), 0) 

where C is a given functional of F. Such nonlinear equations are conveniently 
solved iteratively by means of Fourier transforms, which efIect a deconvolution 
of the integral in (1). Let a tilde designate a Fourier transform, so that, for a 
function F(r), we have 

E(k) = j dr F(r) eciL”, i2) 

and similarly for C(k). Applying this transformation to (1) then yields 

Fyk) = C(k)/[l - #DC(k)], (3) 

and the desired solution after one iteration is finally obtained by Fourier inversion 
of (3), using the fact that 

F(r) = (27~)~” s dkP(k) eik.r, (4) 
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where both r and k are d-dimensional vectors. An essential ingredient of this 
procedure is the orthogonality of the exponential functions, expressed by the 
equation 

f dk eik.(r-r ) = (27~)~ S(r - r’). (5) 

If the solutions are to be obtained by numerical methods, it is therefore desirable 
to employ an algorithm for the transform calculation that maintains the orthogo- 
nality of the basis functions, so that the reciprocal relation between a function and 
its transform is thereby maintained in the numerical calculation. In this paper, we 
describe such algorithms for Fourier transforms in one, two, and three dimensions. 
These will be useful not only in equilibrium calculations, as sketched above, but 
also in nonequilibrium problems where it is desired to compute the one-dimen- 
sional transform of a time-dependent function. 

A simplifying property shared by functions F(r) defined for a fluid is the depen- 
dence of F on only the magnitude r of the vector r. When this is the case, the 
transform E becomes similarly a function of the magnitude k alone. We will 
restrict the present discussion to such central functions, for which Eqs. (2), (4) and 
(5) take on the following simpler forms: 

ford= 1; 

F(r) = k jr dkI;((k) cos kr, 
0 

(6a) 

E(k) == 2 IL dr F(r) cos kr, (74 
0 

s 

xl 
dk cos kr cos kr’ --= i &(r - r’) (84 

0 

for d == 2; and 

F(r) = & fin dk kE(k) J,(kr), 
* 0 

E(k) = 277 Lrn dr r F(r) J,(kr), 
‘0 

s 
m 
0 

dk kJ,,(kr) .I,(kr’) := i 6(r - r’) 

F(r) = & irn dk k l>(k) sin kr, 
- 0 

E(k) = $ ir dr rF(r) sin kr: 

r 30 
“0 

dk sin kr sin kr’ = 5 &(r - r’) 

WI 

0) 

(8b) 

64 

(79 

(8~) 
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for d = 3. In Eqs. (6b)-(8b), J,,(x) is the zeroth-order Bessel function of the first 
kind which, with the representation [I] 

J,(x) =- (2r)-l 1’” (10 exp(ix cos Q, 
“0 

(9 1 

appears upon integration over the polar angle in two dimensions. 
The difhculty with the numerical evaluation of the remaining one-dimensional 

integrals is well known. Referring to (6a), for example, one finds that for large 
values of I’ the oscillations in k of cos kr are so rapid that the usual quadrature 
rules, based on a small sample of integrand values at discrete points, break down. 
Various schemes have been proposed to overcome this difhculty. Filon [2] sug- 
gested a rule based on fitting just E(k) [still referring to (6a)] by a quadratic poly- 
nomial between discrete points and evaluating the resulting integrals exactly. This 
algorithm, though accurate, does not preserve the orthogonal nature of the Fourier 
expansion, so that, in going back and forth between a function and its transform, 
an additional source of inaccuracy is introduced into the numerical calculation. 
Marc recently, the fast Fourier transform method [3] has been reintroduced and 
generalized by Cooley and Tukey [4]. As the name implies, this is a particularly 
efficient numerical procedure which, in addition, maintains orthogonality. In 
essence, however, this algorithm, which is most often used with the number of 
intervals N equal to a power of 2, is a device for the rapid evaluation of a given 
trigonometric sum and not a general rule for determining the form of the sum 
initially. Thus, it could be applied to the sums obtained in Section IV for the three- 
dimensional transforms, or, with some modifications, to the one-dimensional case 
of Section 11. Since the technique makes essential USC of the periodicity of the 
trigonometric functions, however, it is not applicable to the Hankel transforms of 
(6b) and (7b), whose discrete version is considered in Section III, for these contain 
the almost-periodic Bessel function. 

As already indicated, the numerical versions of the Fourier transforms (FT) in 
one, two, and three dimensions are derived in Section 11, III, and IV: respectively. 
These rules for mechanical quadratures to replace the integrals in (6a)-(Sc) all 
maintain the orthogonal nature of the original Fourier expansions and are obtained 
through a common method which may be extended to other transforms. The 
results of a. numerical check of these algorithms,employing aGaussian test function 
for which the exact transform (also Gaussians) can be obtained, arc summarized in 
Section V. 

11. NUMERICAL FT IK OIW DIMENSION 

There arc two steps necessary to convert Eqs. (6a)--(8a) into forms suitable for 
mechanical quadrature: (1) the infinite limits must bc replaced by finite ones, and 
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(2) the integrals must be replaced by sums. As will be seen, these steps are not 
independent. 

We will proceed in two stages. Both the functions J’(r) and p(k) become 
vanishingly small as their arguments become infinitely large. Suppose, first, that 
F(r) vanishes exactly for r > R. This boundary condition then requires that each 
term in the Fourier expansion of F(r) vanish at r = R; i.e., we must have 

cos kR = 0, (10) 
or 

kjR = (2j - 1) r/2, j = 1, 2, 3 ,... . (11) 

The allowed values of the wave number k are then 

kj = (j - $) rr/R, 

so that (6a) reverts to a series form, 

j = 1, 2, 3 ,..., (12) 

F(r) = k f ,VjF(kj) cos kjr, 
3-1 

where the weights wj are chosen so that the form of (7a) is maintained: 

E(kJ : 2 11 dr F(r) cos kjr 

L- $ gl w$‘(kt) 1” dr cos kjr cos kg 
0 

= RWjE(kj)/7T. 

(13) 

(14) 

Here we have used 

Thus, the weights 

s 
R 

dr cos kjr cos kg = iR6j/ . (15) 
0 

Wj = n/R = Ak E kj+l - kj (16) 

are all equal and we have the intermediate result that (6a) and (7a) become 

F(r) = & 2 AkE(kj) cos kjr, 
j=l 

(17) 

p(ki) .= 2 1,” dr F(r) cos kjr 

when F(r) terminates at R. 

(18) 
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Now suppose further that f;‘(kJ vanishes for kj > k, -= (Y -- 6) n/R. Then, in 
a similar fashion, we must have 

cos k,r = 0, (i9) 

or 
k,ri = (2i - 1) ni2, (20) 

so that the allowed values of r are 

ri .= (i - 4) R/(N - I,), i = I, 2, 3 ,..., A;. (21) 

We now write (18) as a sum over these allowed values, with weights M:~‘, 

E(kj) = 2 C w,‘F(r,) cos kjri , 
i-1 

(22) 

so that (I 7) now reads 

F(rd = $ ‘f AkF(k,) cos kjrL 
J--l 

= % fJl weIF f- cos kjri cos kire 
j=l 

= Ak(2N - 1) lq,‘F(ri)j27;. 

Here we have used the discrete orthogonality condition 

i cos kjri cos kjrc --= :(2N - 1) Sir , 
j=1 

which is proved in Appendix A. Thus the weights 

wi’ = Ri(N --- 4) =- 1 Ar 7: ri , , .- ri 

are again equal. This completes the required changes. 
Summarizing, WC have found for the discrete versions of Eqs. (6a)-(8a), 

F(rJ = $ .‘z Ak&k,) cm k,ri . 
j= 1 

x-1 

E(kj) = 2 1 ArF(r,) cos kjr, , 
i=l 

N-l 6. 
1 Ak cos kjri cos kjrc = -?I- IL, 
j.=l 2 Ar 

(23) 

(24) 

(26) 

(27) 

(W 
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with 

Yi = (i - 4) Ar, Ar = R/(N - g>, (29) 
kj = (j - i) Ak, Ak = r/R. (30) 

With this prescription a free choice of range R and number of intervals N deter- 
mines the remaining parameters. Further, each of the discrete functions F(r$) and 
E;‘(kJ is, through (28), the discrete transform of the other, in a manner completely 
analogous to the original continuous version. We remark finally that the upper 
limits of the sums in (26)-(28) have been put at N - 1 since in each case the N-th 
term vanishes. These sums are evidently similar to a trapezoidal rule with equal 
intervals, the intervals being determined by the roots of cos x. 

III. NUMERICAL FT IN Two DIMENSIONS 

To find the discrete counterparts of Eqs. (6b)-(8b), we proceed as in the previous 
one-dimensional case. First, assume that F(r) vanishes for Y > R. This requires 
that k satisfy 

J,(kR) = 0, (31) 
or 

kj = PAR, j = 1,2,3 ,a--, (32) 

where ,u~ is thej-th positive root of J,(x). The integral over k now becomes a discrete 
sum, which we write as 

where w, is again such as to preserve the form of the Fourier inversion: 

Here we have used the orthogonality condition [5] 

s 

R 
dr rJ,(ky) J,(ky) = QR2[.70’(pJ]2 6, . 

0 

(33) 

(34) 

(35) 
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Thus the required weights are in this case unequal, 

and we find that the intermediate result is an ordinary Fourier-Bessel expansion [6] 

F(r) =- & -f j?(k,) Lkik,r) , 
,l 

[Jo’(kj R)]’ 

p(k,) = 2~ rR dr rF(r) .I,,(kg-). 
* 0 

(37) 

(38) 

Now again suppose further that I’(kj) is negligible for kj > k, = p,,,/R, leading 
to the requirement 

.I,,(k,r) :: 0. (39) 

or 

ri = pi/k, = piR/p,\r , i -: 1, 2,. . ., IV. (40) 

With this set of permitted values (38) becomes 

E(kj) = 277 C wi’riF(ri) J&kjri), 
i- 1 

and hence we have 

whence 

where we have put 

== iwi’K”[Jo’(Kri)lZ r,F(r,), 

2 
wi’ =. K2ri[J,,‘(Kri)]2 ’ 

(41) 

(42) 

(43) 

(44) K=k,. 
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In obtaining (42), we have used an (approximate) orthogonality relation established 
in Appendix B, 

(45) 

Summarizing these results, we have finally for the discrete version of Eqs. (6b)- 
(8b): 

(46) 

(47) 

(4X) 

with 

(49) 

(50) 

where the pi are the positive roots of J,(X). If we put 

Ar,Ez 2 
K”ri[J,,‘(Kri)]2 ’ (51) 

2 
Ak’ = R2kj[J,‘(kjR)]2 ’ (52) 

Eqs. (46)-(48) take on the appearance of a trapezoidal rule with unequal intervals: 

F(ri) = &- yi1 AkjkjP(kj) Jo(kjri), 
3=1 

(53) 

N-l 
P(k?) = 2~ c AririF(ri) J,(ky,), 

i=l 

N-l 
‘? Ak.k.J(k.r) J(k.r) = -!--f.iC 
JZ 

330.3i 0 32 ri Ari ’ 

(54) 

(55) 
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Note that, using the asymptotic forms [7] 

pi - (j - 14) r, (56) 
J,‘(x) - (2/~fx)l/~ sin@ - &r), (57) 

we have, from (51) and (52), 

Ari - R/(N - 1,), (58) 
Aki - T/R, WI 

which may be compared with Eqs. (29), (30) and (63), (64). Finally, we note that, 
as in the previous case, R and N are to be freely chosen, all other parameters of 
the algorithm following from this choice. 

IV. NUMERICAL FT IN THREE DIMENSIONS 

The procedure for obtaining the discrete three-dimensional transforms is 
completely similar to the previous cases and we quote only the final result here. 

Assuming first that F(r) vanishes for r >, R, one obtains an ordinary Fourier 
sine expansion for rF(r). With the additional assumption that I;‘<k,) vanishes for 
kj >, k, = NT/R, we get the discrete analogs of (6c)-(8~): 

F(ri) =y G2F’s Ak kjE(kJ sin k3ri , 
2 I=1 

E(kj) z ;sFAfJ Ar riF(ri) sin k,ri , 
L3 2-l 

(60) 

(61) 

with 

N-l 
V 8it C Ak sin kjri sin kjrc z - - , 
2 Au i=l 

ri = idr, Ar = R/N, 

kj = jAk, Ak =: n/R. 

(62) 

(63) 

(64) 
Equation (62) is proved in Appendix C. 

V. A NUMERICAL TEST 

In the preceding three sections, orthogonality-preserving algorithms for the 
numerical calculation of Fourier transforms in one, two, and three dimensions 

581/8/3-S 
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have been obtained, the result being in each case similar to a trapezoidal rule with 
the intervals determined by the roots of cos X, J,(X), and sin X, respectively. In 
this section, we present the results of a numerical test of these algorithms. 

For the test function, we choose a Gaussian, 

F(r) = exp(-&P), (65) 

for which the transforms are also Gaussian; in d dimensions, 

P(k) = (2~-)~/~ exp(-$k2). (66) 

The FT of (65) was evaluated numerically for d = 1, 2, and 3 using the schemes 
described above. A comparison of the numerical and exact transforms then 
affords a direct test of the accuracy of these quadrature rules. The results are shown 
in Table I, in the form of the largest difference (2?~)-~/~ 1 ~(k$‘x - &kJcomp / , for 
calculations using N = 20,100, and 200 intervals. In all cases R was about 10. 

TABLE I 

The Largest Difference (2/7r-d/2 / &kj)ex - fl(kj) come j Between the Exact and Computed (Using 
N Intervals) Gaussian Transforms in d Dimensions 

N 

d 20 100 200 

1 3.4 x 10-10 7.0 x 10-16 1.0 x 10-14 
2” 1.9 x 10-B 4.4 x 10-s 5.8 x 10-S 
3 2.7 x 1OF’ 2.0 x 10-15 2.0 x 10-15 

a The d = 2 results are of the order of the error in the compuied Bessel functions. 

The d = 1 and 3 cases were computed in double precision on an IBM 360, 
Model 75, for which machine accuracy is 16 to 17 decimal digits. It is evident from 
Table I that the numerical FT in these cases are essentially exact for N = 100 and 
200. The two-dimensional case was evaluated in single precision on a CDC 6600, 
which provides 14-15 significant decimal digits. However, the error in the com- 
puted roots and values of J, was of the order of 10M8, so that the computed FT in 
the two-dimensional case is, from Table I, again essentially exact, within the 
accuracy obtainable [8]. As expected, the numerical inversion of the computed 
transforms reproduces, in all cases, the original function to about the accuracy of 
the computed basis functions. 

The two- and three-dimensional algorithms have in addition been used in the 
numerical solution of integral equations for hard-core fluids [9, lo], with satis- 
factory results. 
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VI. CONCLUSIONS 

In situations where a Fourier transform is to be numerically computed and 
subsequently numerically inverted, perhaps repetitively, it is desirable that the 
computational algorithm used to accomplish this maintain the orthogonality of 
the discrete basis functions appearing in the numerical transforms. Algorithms 
with this property have been obtained above for the FT of central functions in 
one, two, and three dimensions. These algorithms are constituted by Eqs. (26)-(30), 
(46)-(50) and (60)-(64), respectively. A numerical check using a Gaussian test 
function has shown that these rules are accurate as well. The algorithms for two- 
and three-dimensional transforms have in addition been successfully applied to 
the calculation of the radial distribution function for hard-core systems [9, IO]. 

Finally, the procedure followed in obtaining these results is applicable to other 
transforms as well, such as forms of the Fourier-Bessel transform involving Bessel 
functions other than Jo. 

APPENDIX A. DISCRETE ORTHOGONALITY CONDITION FOR NUMERICAL FT ix 
ONE DIMENSION 

In this appendix, we prove the orthogonality condition used in Section II in 
arriving at the discrete Fourier transform in one dimension. We need to evaluate 
the sum 

II:;] = i cos k,r, cos knrj 
11. =I 

= ; gl {cos k,(rt -- rj) + cos k,(r, $ r& 

(2n - l)(d -.j) Tr 
2N- 1 

+ cos (2n - IW -i- .i - I> rj 
2N- 1 \’ (Al) 

where Eqs. (29) and (30) have been used. The sum of cosines in (Al) is [l l] 

il cos(2n - 1) 0 = 2 sin 2NB csc 0, (4 
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so that (Al) becomes 

1 : 
Llj;) = 4 I sin 

2N(G - j) ‘in 
2N _ i V-An csc 2N _ 1 

-_ sin 2Wt-kj- 1)~ csc (L-!-j- 1)~ 
2hT- 1 

(C’j- l)n 
+ sin(L + j - 1) 77 csc qi x :) rr cos --2N __ 1 

+ cos(L-tj- Hrrj 

= d sin(L -j) z csc 
(C-j)sT v -- .i) 77 
2N-- 1 'OS 2Ni* 643) 

This last expression also vanishes if I + j. But as I approaches,j, it has the limiting 
value (2N - 1)!4. Thus we get 

D;;’ = ;(2N - 1) 6,;) 644) 

which is Eq. (24). 

APPENDIX B: DISCRETE ORTHOGONALITY COSDITION FOR NUMERICAL FT IN 
Two DIMESSIONS 

The proof of Eq. (45) for transforms in two dimensions is more involved than 
that of the corresponding cases in one and three dimensions, and, in the end, less 
general. Briefly, the proof consists in expressing the sum of Bessel functions in (45) 
in terms of a contour integral in the complex plane, and then evaluating the integral. 
A similar proof could be made for the one- and three-dimensional cases. 

The following proof is adapted from Gray, Mathews, and Macrobert [12]. Con- 
sider the function 

ZP(Z) J (sz) J (rz) 
Q(z) = ’ Jn;fl- 

where I?:’ (z) is the Hankel function 

031) 

q’(z) = J,(z) + iY,(z), 032) 
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Y,(z) being the zeroth-order Bessel function of the second kind, and where 

s +E pcIf.L, (B3) 
t I pj;/Lv . (B4) 

The zeros of J,,(z) are simple poles of Q(Z); the residue at z =-_ 5~~ is 

where we have used the fact that 

The second equality in (B5) follows from (B2) and the Wronskian [13] 

J,,(z) Y,‘(z) - J,‘(z) Y,,(z) 1-z 29r.z (B7) 

evaluated at the root z = pn . In addition, Q(z) has a logarithmic singularity at the 
origin due to #‘(z), with zero residue. 

Note that (B5) contains just the summand desired. Consider now the integral 
of Q(Z) around the contour C shown in Fig. 1; since Q(z) has a logarithmic branch. 
point at the origin, the complex plane is cut along the negative imaginary axis. All 
singularities are excluded from the interior of C, so that we have 

i Q(z) dz - 0. 
J c 

-)&y!L 

r 
FIG. 1. Contour for the integral of Q(z). Cross-hatching denotes a branch cut 
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Let us now evaluate the integral along each of the segments of C. With (B5), the 
contribution of the semicircular paths about the singularities, in the limit of 
vanishing radii, is found to be -4#‘, where 

(B9) 

Also in the limit of vanishing radii, the straight line segments along the real axis 
yield 

P j:,, Q(x) dx + P jiN Q(x) dx 

ZzT P 
s uNiQ(xeiv) + Q(x)> dx 

0 

= 2 
s uN xJo(w/~~) JocUd~d dx 

0 

= ~~~[Jo’bdl~ 88,. . VW 

Here P means Cauchy principal value and we have used the analytic continuations 
of Jo(z) and Hi”(z) to obtain the second line of (BlO). Letting L go to infinity, one 
can show, using the asymptotic forms of J,(z) and #“(z), that Q(z) vanishes 
exponentially along the upper horizontal branch of C if pE”G + pj < 2,~~ . Finally, 
the integrals along the vertical branches can be written, in the limit L -+ co, 

s ;ldrn Q(z) dz + j:;;,,, Q(z) dz 
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where the last equality defines E ir’. Here the asterisk denotes complex conjugate, 
lm(A) is the imaginary part of ,4, and the third line in (Bli) follows again from 
the analytic properties of J,(z) and Hi”(z). 

Collecting these partial results into (B8), we have finally 

It remains to be shown that E:?’ vanishes, which, from (Bll), evidently follows if 
Q(ps + iy) is real. This is easily shown to be the case for Iarge N7 when, using the 
asymptotic forms of J,(z) and Hi”(z), we find that 

2(- 1)“:’ sinh sy sinh ty e. y 
Q(z) - rr(vtj~- - sinh y , (B14) 

thus establishing (45) at least asymptotically. We have not succeeded in showing 
that #’ vanishes in general. However, Eq. (45) is better than the present argument 
may suggest. A direct numerical evaluation of the sum in I$) shows [lo] that 
I 9, ‘V ) is (for all ~‘,,j) already of order lO-‘j for N = 5, and of the order of the error 
in the computed Bessel functions, about 10-R, for N = 20. Since, in numerical 
calculations, N will generally be several hundred, Eq. (45) follows as a numerically 
correct orthogonality condition for such cases. 

APPENDIX C: DISCRETE ORTHOGONALITY CONDITIOY FOR NUMERICAL FT IS 
THREE DIMENSIOSS 

The evaluation of 

M 

Dg) = C sin knrp sin knrj 
tL=l 

is similar to that of 0::‘. Using a trigonometric identity and Eqs. (63) and (64) we 
have 

DE) = 4 c {cos k,(r, - rj) - cos k,(r, -1 rj)] 
7lL.l 

= 4. il (cos n(e -,j) 7TjN - cos n(f! +.ij n-lfq. 
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The sum over cosines is here [I l] 

2 cos ne = sin INO cos &NO cot $0 - sin2 &NO, 
n-1 

so that (C2) becomes 

0::) = k 
I 
sin(t - j) F COS(/ - j) 5 cot(C - j) & - sin*(L - j) 5 

- sin(/ + j) F cos(d -k j) -$ cot(/ + j) & + sin*(L + j) :I 

= i sin(t -j) 5 cos(L - j) $ cot(l - j) & 

(C3) 

(C4) 

which is Eq. (62). 
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